A Unifying View of Wiener and Volterra Theory and Polynomial Kernel Regression
نویسندگان
چکیده
Volterra and Wiener series are perhaps the best-understood nonlinear system representations in signal processing. Although both approaches have enjoyed a certain popularity in the past, their application has been limited to rather low-dimensional and weakly nonlinear systems due to the exponential growth of the number of terms that have to be estimated. We show that Volterra and Wiener series can be represented implicitly as elements of a reproducing kernel Hilbert space by using polynomial kernels. The estimation complexity of the implicit representation is linear in the input dimensionality and independent of the degree of nonlinearity. Experiments show performance advantages in terms of convergence, interpretability, and system sizes that can be handled.
منابع مشابه
Implicit Wiener Series Part II: Regularised Estimation
Classical Volterra and Wiener theory of nonlinear systems does not address the problem of noisy measurements in system identification. This issue is treated in the present part of the report. We first show how to incorporate the implicit estimation technique for Volterra and Wiener series described in Part I into the framework of regularised estimation without giving up the orthogonality proper...
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملOn Modelling of Nonlinear Systems and Phenomena with the Use of Volterra and Wiener Series
This is a short tutorial on Volterra and Wiener series applications to modelling of nonlinear systems and phenomena, and also a survey of the recent achievements in this area. In particular, we show here how the philosophies standing behind each of the above theories differ from each other. On the other hand, we discuss also mathematical relationships between Volterra and Wiener ker...
متن کاملVolterra Series Based Nonlinear Model: a Comparison of Kernel Identification Schemes
Volterra series based model, which is comprised of uniand multi-convolutions in terms of various inputs, could provide an accurate description of nonlinearities while preserving memory effects missed in static transformations. The basic premise of the Volterra theory of nonlinear systems is that any nonlinear system can be modeled as an infinite sum of multidimensional convolution integrals of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neural computation
دوره 18 12 شماره
صفحات -
تاریخ انتشار 2006